0
 CDS Education
 We explore, learn, and educate big minds.

Updates

CMS will be up tonight.
Work on Project A (due next Tuesday Midnight).
If you joined late, permission numbers will be sent out soon.

+ Extended quiz deadline

CDS Education

 Introduction to Machine Learning for Python
Intro to Machine Learning and

 Linear Regression
Machine Learning

According to Wikipedia...

"Machine Learning is a subfield of computer science that gives computers the ability to learn without being explicitly programmed."

Better Definition

By Professor Kilian Q.

Weinberger
CS 4780/5780

Traditional Computer Science

Data

Program \square

Output

Computer

Machine Learning

\longmapsto Program
Output \square

Computer

Machine Learning

Traditional CS

My Definition

Let's talk about functions...

$\mathrm{f}(\mathrm{x})$? = x ? = x^{\wedge} ? ?
Vertical line test?

Functions

Function

Something

Something

Input

ML Setup

Hypothesis: Some speculative relationship between the input space and output space

Input Space: Variable or set of variables(data)
Output Space: Target variable to estimate

Supervised vs Unsupervised

Supervised learning problems...

- Known target variable info
- Validation examples

Unsupervised learning problems...

- Unknown target variables
- Difficult to validate

- Supervised learning:
given $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, learn $f(x)=y$
- Unsupervised learning: given x_{1}, \ldots, x_{n}, learn patterns or structure
- Online learning: for $i=1, \ldots, n$, given x_{i}, predict and observe y_{i}, learn $f(x)=y$
- Active learning: for $i=1, \ldots, n$, choose x_{i}, predict and observe y_{i}, learn $f(x)=y$
- Reinforcement learning: for $i=1, \ldots, n$, choose x_{i}, predict y_{i}, observe reward r_{i}, learn $f(x)=y$

Supervised Learning

Setup

- Training / Validation split
- Feature variable(s)
- Target variable
- Train and Test

Sent Mail
spam
(372)
fir
Trash

Machine Learning

Machine Learning

Traditional CS

Training and Testing

Train/Test Split

Training

Testing

Supervised Learning

Training

Testing

Validation Set

- Split data into two sets
- Train model on one and validate on another
- Advantages / Disadvantages?

Output Space Properties

- Continuous - e.g. temperature, height, probability
- Discrete - e.g. car brands, race, Pokémon type, diagnosis

Regression vs Classification

Classification

Regression

What is Learned

Function

Weighted Sum

INPUT x

$$
y=B_{0}+B_{I} x_{1}+\ldots+B_{p} x_{p}
$$

Objective function

- All ML problems are optimization problems
- Format: Minimize/Maximize Obj in terms of x.
- Subject to set of constraints
- Objective functions represent assumptions
- Value of objective is an estimation of error

Calculating Error

Linear Regression

Linear Regression

$$
y=B_{0}+B_{1} x_{1}+\ldots+B_{p} x_{p}+\varepsilon
$$

What are the assumptions?

- Linear relationship
- B, the coefficient vector, does not depend on x
- There is an unremovable noise
- This noise is normally distributed about the line

Objective: Least Squares Error (L2)

$$
\sum_{i=0}^{n}\left(y_{i}-\left(B_{0}+B_{1} x_{1}+\ldots+B_{p} x_{p}\right)\right)^{2}
$$

What does this minimize?
Why this form?

Coming Up

Your problem set: Project A
Next week: Introduction to Classification
See you then!

